lunes, 5 de septiembre de 2011

equipos 1 al 7 ensamblar equipo de computo


si quieres aprender dinamicamente DESCARGA ESTA PAGINA DE LA TARJETA MADRE
clic al link de descarga
http://www.megaupload.com/?d=G71LWGWT
=TARJETA MADRE=
La tarjeta madre es el componente más importante de un computador, ya que en él se integran y coordinan todos los demás elementos que permiten su adecuado funcionamiento. De este modo, una tarjeta madre se comporta como aquel dispositivo que opera como la plataforma o circuito principal de una computadora.
La tremenda importancia que posee una tarjeta madre radica en que, en su interior, se albergan todos los conectores que se necesitan para cobijar a las demás tarjetas del computador. De esta manera, una tarjeta madre cuenta con los conectores del procesador, de la memoria RAM, del Bios, asi como también, de las puertas en serie y las puertas en paralelo. En este importante tablero es posible encontrar también los conectores que permiten la expansión de la memoria y los controles que administran el buen funcionar de los denominados accesorios periféricos básicos, tales como la pantalla, el teclado y el disco duro.

La tarjeta madre es también la llamada “Placa Central” del computador, y como ya se mencionaba, en ella podemos encontrar todos los conectores que posibilitan la conexión con otros microprocesadores, los que le permiten la realización de tareas mucho más específicas. De este modo, cuando en un computador comienza un proceso de datos, existen múltiples partes que operan realizando diferentes tareas, cada uno llevando a cabo una parte del proceso. Sin embargo, lo más importante será la conexión que se logra entre el procesador central, también conocido con el nombre de CPU (este se confunde muchas veces con la tarjeta madre, pero la CPU va conectada a esta), y los otros procesadores.
A la hora de elegir la tarjeta madre que utilizaremos en nuestro computador es de suma importancia tener en cuenta las recomendaciones que el fabricante de éste haya realizado en el manual de instrucciones, ya que el instalar placas madre con características no compatibles con los requerimientos del fabricante, hace que estos dispositivos, que por lo general no presentan fallas luego de mucho tiempo de uso, fallen de manera inesperada.


=ZOCALO=
El zócalo (socket en inglés) es un sistema electromecánico de soporte y conexión eléctrica, instalado en la placa base, que se usa para fijar y conectar un microprocesador. Se utiliza en equipos de arquitectura abierta, donde se busca que haya variedad de componentes permitiendo el cambio de la tarjeta o el integrado. En los equipos de arquitectura propietaria, los integrados se sueldan sobre la placa base, como sucede en las videoconsolas.

Existen variantes desde 40 conexiones para integrados pequeños, hasta más de 1300 para microprocesadores, los mecanismos de retención del integrado y de conexión dependen de cada tipo de zócalo, aunque en la actualidad predomina el uso de zócalo ZIF (pines) o LGA (contactos).
El zócalo va soldado sobre la placa base de manera que tiene conexión eléctrica con los circuitos del circuito impreso. El procesador se monta de acuerdo a unos puntos de guía (borde de plástico, indicadores gráficos, pines o agujeros faltantes) de manera que cada pin o contacto quede alineado con el respectivo punto del zócalo. Alrededor del área del zócalo, se definen espacios libres, se instalan elementos de sujeción y agujeros, que permiten la instalación de dispositivos de disipación de calor, de manera que el procesador quede entre el zócalo y esos disipadores.

En los últimos años el número de pines ha aumentado de manera substancial debido al aumento en el consumo de energía y a la reducción de voltaje de operación. En los últimos 15 años, los procesadores han pasado de voltajes de 5 V a algo más de 1 V y de potencias de 20 vatios, a un promedio de 80 vatios.

=PROCESADOR=
Se llama CPU (siglas de Central Processing Unit) o Unidad Central de Proceso (UCP) a la unidad donde se ejecutan las instrucciones de los programas y se controla el funcionamiento de los distintos componentes del ordenador. Suele estar integrada en un chip denominado microprocesador.
Es el corazón de todo ordenador, y es un microchip con una alta escala de integración, es decir, que aloja millones de transistores en su interior. Todos estos transistores forman una serie de circuitos lógicos que permite ejecutar una determinada variedad de instrucciones básicas.
La CPU está compuesta por: registros, la Unidad de control, la Unidad aritmético-lógica, y dependiendo del procesador, una unidad en coma flotante.
Cada fabricante de microprocesadores tendrá sus propias familias de estos, y cada familia su propio conjunto de instrucciones. De hecho, cada modelo concreto tendrá su propio conjunto, ya que en cada modelo se tiende a aumentar el conjunto de las instrucciones que tuviera el modelo anterior.
El microprocesador secciona en varias fases de ejecución la realización de cada instrucción:
• Fetch, lectura de la instrucción desde la memoria principal,
• Decodificación de la instrucción, es decir, determinar qué instrucción es y por tanto qué se debe hacer,
• Fetch de los datos necesarios para la realización de la operación,
• Ejecución,
• Escritura de los resultados en la memoria principal o en los registros.
Cada una de estas fases se realiza en uno o varios ciclos de CPU, dependiendo de la estructura del procesador, y concretamente de su grado de supersegmentación. La duración de estos ciclos viene determinada por la frecuencia de reloj, y nunca podrá ser inferior al tiempo requerido para realizar la tarea individual (realizada en un solo ciclo) de mayor coste temporal. El microprocesador dispone de un oscilador de cuarzo capaz de generar pulsos a un ritmo constante, de modo que genera varios ciclos (o pulsos) en un segundo.
Actualmente se habla de frecuencias de Megaherzios (MHz) o incluso de Gigaherzios (GHz), lo que supone millones o miles de millones, respectivamente, de ciclos por segundo. El indicador de la frecuencia de un microprocesador es un buen referente de la velocidad de proceso del mismo, pero no el único. La cantidad de instrucciones necesarias para llevar a cabo una tarea concreta, así como la cantidad de instrucciones ejecutadas por ciclo ICP son los otros dos factores que determinan la velocidad de la CPU. La cantidad de instrucciones necesarias para realizar una tarea depende directamente del juego de instrucciones disponible, mientras que el ICP depende de varios factores, como el grado de supersegmentación y la cantidad de unidades de proceso o “pipelines” disponibles entre otros.
Los modelos de la familia x86 (a partir del 386) trabajan con datos de 32 bits, al igual que muchos otros modelos de la actualidad. Pero los microprocesadores de las tarjetas gráficas, que tienen un mayor volumen de procesamiento por segundo, se ven obligados a aumentar este tamaño, y así tenemos hoy en día microprocesadores gráficos que trabajan con datos de 128 ó 256 bits. Estos dos tipos de microprocesadores no son comparables, ya que ni su juego de instrucciones ni su tamaño de datos son parecidos y por tanto el rendimiento de ambos no es comparable en el mismo ámbito.


=DISIPADOR DE CALOR=
Un disipador extrae el calor del componente que refrigera y lo evacúa al exterior, normalmente al aire. Para ello se necesita una buena conducción de calor a través del mismo, por lo que se suelen fabricar de aluminio por su ligereza, pero también de cobre, mejor conductor del calor, pero más pesado.

En el caso habitual, el disipador está en íntimo contacto con el dispositivo que refrigera, empleando grasa de silicona o láminas termoconductoras para asegurar una baja resistencia térmica entre el componente y el disipador. Para evacuar el calor al ambiente, se aumenta la superficie del disipador mediante aletas o varillas, cuyo diseño varía dependiendo de si existe circulación forzada del aire o sólo convección natural.
El acabado suele ser negro para mejorar la radiación, pero muchas veces se deja el metal expuesto y únicamente se protege de la corrosión. El acabado no debe aumentar la resistencia térmica.

=VENTILADOR=

(cooler, fan, cúler). Ventilador que se utiliza en los gabinetes de computadoras y otros dispositivos electrónicos para refrigerarlos. Por lo general el aire caliente es sacado desde el interior del dispositivo con los coolers.

Los cooler se utilizan especialmente en las fuentes de energía, generalmente en la parte trasera del gabinete de la computadora. Actualmente también se incluyen coolers adicionales para el microprocesador y placas que pueden sobrecalentarse. Incluso a veces son usados en distintas partes del gabinete para una refrigeración general.

Los coolers son uno de los elementos que, en funcionamiento, suelen ser de los más ruidosos en una computadora. Por esta razón, deben mantenerse limpios, aceitados y ser de buena calidad. Los viejos ventiladores podían producir sonidos de hasta 50 decibeles, en cambio, los actuales están en los 20 decibeles.

Por lo general los coolers en las PCs de escritorio están continuamente encendidos, en cambio en las computadoras portátiles suelen prenderse y apagarse automáticamente dependiendo de las necesidades de refrigeración (por una cuestión de ahorro energético).

Actualmente también las computadoras incluyen detección y aviso de funcionamiento de coolers. Antiguamente los coolers podían estropearse y dejar de funcionar sin que el usuario lo note, ocasionando que la computadora aumente su temperatura y produciendo errores de todo tipo.

Los coolers nunca deben ser obstruidos con ningún objeto, pues esto puede causar un sobrecalentamiento en la computadora.
______________________________________________________________

= ISA=
(Industry Standard Architecture) se reconocen por que son negras y largas, con dos grupos de conectores separados por un espacio, miden unos 14 cm. (existe una versión más vieja de sólo 8,5 cm.): Son ranuras de 16 contactos-bits. Funcionan a una frecuencia de reloj máxima de 8Mhz y proporcionan un máximo de 16 Mb/s de transmisión de datos, suficiente para conectar un módem o una tarjeta de sonido, pero poco para tarjetas de vídeo con prestaciones a partir de 256 colores.
  • Ancho: 8, 16 bits
  • Velocidad=4.77,  8.33 Mhz

RANURAS EISA
EISA (Arquitectura Extendida Estdndar de la Industria.), tipo de slot para tarjetas de ampliación basado en el estándar ISA pero de 32 bits y capacidad de 32 MB/s de transferencia; actualmente en desuso debido a la implantación del PCI pero en la industria se sigue usando en maquinas que requieren uso rudo y control por computadora.
Esta tecnología tampoco fue muy difundida debido a su escasa velocidad de bus, pero gracias a esa escasa velocidad pudo mantener la compatibilidad con sus antecesoras de 8 bits y 16 bits.
  • Ancho: 32
  • Velocidad: 8.33 MHz
Ancho de banda; 33,3 Mb/s

=PCI=
PCI (Peripheral Component Interconnect) Es un estándar abierto desarrollado por Intel en tiempos del 486. Permite interconectar tarjetas de vídeo, audio, adaptadores de red y otros muchos periféricos con la placa base. El estándar PCI 2.3 llega a manejar 32 bits a 33/66MHz con tasas de transferencia de datos de 133MB/s y 266MB/s respectivamente. No obstante y hoy en día Intel impulsa decididamente el estándar PCI express, que en su versión x16 y funcionando en modo dual proporciona una tasa de transferencia de datos de 8GB/s, ni más ni menos que 30 veces más que PCI 2.3.

La fotografía superior nos muestra una ranura PCI (en blanco) y otra PCI-express x16 (en negro), las tarjetas diseñadas para una y otra son incompatibles entre sí. Normalmente el bus PCI de la placa base admite un máximo de cuatro ranuras numeradas del 1 al 4, pueden existir una quinta ranura PCI pero en realidad está compartida. Por ejemplo: con otra ranura ISA como la que se reproduce en la foto inferior.


=BIOS=
El BIOS (sigla en inglés de basic input/output system; en español "sistema básico de entrada y salida") es un software que localiza y reconoce todos los dispositivos necesarios para cargar el sistema operativo en la memoria RAM; es un software muy básico instalado en la placa base que permite que ésta cumpla su cometido. Proporciona la comunicación de bajo nivel, el funcionamiento y configuración del hardware del sistema que, como mínimo, maneja el teclado y proporciona una salida básica (emitiendo pitidos normalizados por el altavoz de la computadora si se producen fallos) durante el arranque. El BIOS usualmente está escrito en lenguaje ensamblador. El primer uso del término "BIOS" se dio en el sistema operativo CP/M, y describe la parte de CP/M que se ejecutaba durante el arranque y que iba unida directamente al hardware (las máquinas de CP/M usualmente tenían un simple cargador arrancable en la memoria de sólo lectura, y nada más). La mayoría de las versiones de MS-DOS tienen un archivo llamado "IBMBIO.COM" o "IO.SYS" que es análogo al BIOS de CP/M.

El BIOS es un sistema básico de entrada/salida que normalmente pasa inadvertido para el usuario final de computadoras. Se encarga de encontrar el sistema operativo y cargarlo en la memoria RAM. Posee un componente de hardware y otro de software; este último brinda una interfaz generalmente de texto que permite configurar varias opciones del hardware instalado en el PC, como por ejemplo el reloj, o desde qué dispositivos de almacenamiento iniciará el sistema operativo (Microsoft Windows, GNU/Linux, Mac OS X, etc.).
El BIOS gestiona al menos el teclado de la computadora, proporcionando incluso una salida bastante básica en forma de sonidos por el altavoz incorporado en la placa base cuando hay algún error, como por ejemplo un dispositivo que falla o debería ser conectado. Estos mensajes de error son utilizados por los técnicos para encontrar soluciones al momento de armar o reparar un equipo.


______________________________________________________________
Conector IDE
El interfaz ATA (AdvancedTechnologyAttachment) o PATA, originalmente conocido como IDE (IntegrateddeviceElectronics), es un estándar de interfaz para la conexión de los dispositivos de almacenamiento masivo de datos y las unidades ópticas que utiliza el estándar derivado de ATA y el estándar ATAPI.
Historia
La primera versión del interfaz ATA, conocido como IDE, fue desarrollada por Western Digital con la colaboración de Control Data Corporation (quien se encargó de la parte del disco duro) y CompaqComputer (donde se instalaron los primeros discos).
En un primer momento, las controladoras ATA iban como tarjetas de ampliación, mayoritariamente ISA, y sólo se integraban en la placa madre de equipos de marca como IBM, Dell o Commodore. Su versión más extendida eran las tarjetas multi I/O, que agrupaban las controladoras ATA y disquete, así como los puertos RS-232 y el puerto paralelo, y sólo modelos de gama alta incorporaban zócalos y conectores SIMM para cachear el disco. Dicha integración de dispositivos trajo consigo que un solo chip fuera capaz de desempeñar todo el trabajo.
Junto a la aparición del bus PCI, las controladoras casi siempre están incluidas en la placa base, inicialmente como un chip, para después pasar a formar parte del chipset.
FDD: Un disquete o disco flexible (en inglés floppy disk o diskette) es un medio o soporte de almacenamiento de datos formado por una pieza circular de material magnético, fina y flexible (de ahí su denominación) encerrada en una cubierta de plástico cuadrada o rectangular.
Los disquetes se leen y se escriben mediante un dispositivo llamado disquetera (o FDD, del inglés Floppy Disk Drive). En algunos casos es un disco menor que el CD. La disquetera es el dispositivo o unidad lectora/grabadora de disquetes, y ayuda a introducirlo para guardar la información.
Este tipo de dispositivo de almacenamiento es vulnerable a la suciedad y los campos magnéticos externos, por lo que, en muchos casos, deja de funcionar con el tiempo.

Historia

En 1967, IBM encomendó a su centro de desarrollo de almacenamiento de San José (California) una nueva tarea: desarrollar un sistema sencillo y barato para cargar microcodigo en los System/370 de sus ordenadores centrales.

Uso en la actualidad


Esta unidad está quedando obsoleta y son muchos los computadores que no la incorporan, por la aparición de nuevos dispositivos de almacenamiento más manejables, que además disponen de mucha más memoria física, como por ejemplo las memorias USB. Una memoria USB de 1 GB (Gigabyte) de memoria equivale aproximadamente a 900 disquetes. De hecho, ya en algunos países este tipo de unidad no se utiliza debido a su obsolescencia.
Sin embargo, siguen siendo de una gran utilidad como discos de arranque en caso de averías o emergencias en el sistema operativo principal o el disco duro, dado su carácter de estándar universal que en los IBM PC compatibles no necesita ningún tipo de controladora adicional para ser detectados en el proceso de carga por la BIOS y dado que, a diferencia del CD-ROM, es fácilmente escribible. Lo que, en situaciones de emergencia, los convierte en un sistema altamente fiable, básico y difícilmente sustituible. Las PC aún incluyen en sus BIOS lo necesario para el uso del disquete en caso de ser instalada una unidad, no obstante muchas marcas de PC a partir de 1997 han comenzado a incluir arranque por CD/DVD, así como por medio de unidades externas arrancables que pudiesen ser discos duros removibles, Memorias USB y otros medios que posean alguna información de arranque, y en las Netbooks al prescindir de unidades externas como CD/DVD Hacen uso extensivo de un arranque por USB O tarjeta de memoria según el fabricante.



SATA: La interfaz Serial-ATA

Nota:  En este capítulo encontrará algunas referencias a la interfaz SAS ("Serial Attached SCSI").  La razón es que, como se indicó en el capítulo dedicado a dicha interfaz , a partir de 2002, los esfuerzos en el desarrollo de nuevas interfaces serie tienden a converger en una arquitectura única que englobe los dos estándares serie que venían utilizándose; SAS y SATA ("Serial ATA/ATAPI").  En ese año, la STA ("SCSI Trade Association") y el Grupo de Trabajo SAS ("Serial Attached SCSI Working Group") anuncian un acuerdo de colaboración.  En Enero del año siguiente, el STA y el Grupo de Trabajo SATA II ("Serial ATA Working Group") acuerdan aunar esfuerzos para armonizar sus respectivas especificaciones.  
  Antecedentes
En Noviembre del 2001, un grupo de fabricantes de hardware, entre los que se encontraban Intel, Dell, Maxtor, APT Technologies y Seagate, crearon el Seria ATA Working Group  para hacer frente a las necesidades de la próxima generación interfaces.  Posteriormente, en el 2004, cambiaron el nombre por el de Serial ATA International Organization (SATA-IO) .


Por estas fechas, tras las mejoras de la especificación ATA-7 con la que se habían conseguido transferencias de 133 MB/s, el modelo tradicional de interfaz PATA ("Parallel ATA") empezaba a mostrar síntomas de agotamiento, después de haber prestado eficientes servicios desde su concepción inicial a mediados de los 80.  La idea entre los especialistas era que había que mirar en otra dirección.  Paralelamente, la tecnología de enlaces con  fibra óptica e inalámbrica, habían propiciado grandes avances en el campo de las comunicaciones serie.  En este ambiente, los esfuerzos se dirigieron a conseguir una nueva especificación de arquitectura serie para la interfaz ATA.

Como se muestra en la figura 1 y es costumbre en los diseños informáticos, la nueva arquitectura, conocida como Serial ATA (SATA), adopta una estructura de capas.  La capa de órdenes es un superconjunto de la arquitectura ATA anterior;  de forma que los nuevos dispositivos son compatibles con los protocolos ATA tradicionales, y son por tanto compatibles respecto a las aplicaciones existentes.  Sin embargo la capa física es distinta, lo que representa un punto de ruptura en el sentido de que los nuevos dispositivos SATA no son compatibles con los anteriores.  No obstante, la nueva arquitectura ofrece mejoras suficientes para justificar el cambio.
La idea es que los dispositivos ATA de cualquier tipo (serie o paralelo) compartan un juego común de órdenes, y organizar la conexión de estos dispositivos en una estructura donde existen direcciones, dominios y dispositivos concretos.  Una organización que recuerda vagamente la de Internet en la que está inspirada  (un dominio ATA contiene un controlador host SATA y un dispositivo).
2  Capa física
Cada puerto, multiplicador, dispositivo o adaptador SATA o SAS ("Serial Attached SCSI") tiene un número de puerto único de 64 bits. Una especie de MAC o código de barras del producto con: un código NAA de 4 bits; un código de fabricante de 24 bits asignado por la autoridad normativa, y un código de dispositivo a disposición de cada fabricante de 36 bits.
2.1  Topología
SATA es una arquitectura en estrella.  Es decir, la conexión entre puerto y dispositivo es directa.  Por consiguiente, no es un bus en el que coexistan distintos clientes ni concentradores ("Hubs").  Cada dispositivo disfruta la totalidad del ancho de banda de la conexión sin que exista la sobrecarga inherente a los mecanismos arbitraje y detección de colisiones.

El centro de la estrella es un controlador host, embebido en la placa-base, o instalado como una tarjeta en uno de sus zócalos, que actúa como puente entre los datos paralelos del bus y el dispositivo SATA.  Existen controladores con más de una salida (generalmente 4 u 8), de forma que pueden conectarse varios dispositivos.  Como veremos más adelante, también se han diseñado multiplicadores de puerto que permiten, por así decirlo, subdividir los brazos de la estrella a fin de poder instalar más dispositivos (conceptualmente funcionan como un "Hub").
Además de la tarea de serializar/paralelizar los datos, una parte importante del trabajo del controlador está relacionada con los protocolos de conexión y desconexión con el periférico, que son bastante sofisticados en este tipo de interfaz, ya que está prevista la capacidad de conexión en caliente ("Hot plug").  El protocolo de conexión es capaz de identificar el tipo de dispositivo conectado; detectar si funciona correctamente; negociar la velocidad de la conexión, Etc.  La interfaz Serial ATA guarda ciertas similitudes con la interfaz USB , aunque es mucho más rápida que aquella, y los dispositivos SATA no se alimentan del propio bus.  La tabla adjunta muestra un resumen comparativo con las características de las conexiones más frecuentes.
Característica
USB 1
1394a
USB 2
1394b
SATA-1
SATA-II
Velocidad de pico MB/s
1.5
50
60
100
150
300
Velocidad típica MB/s
8
40
45
80
150
300
Longitud máx cable m.
6.0
4.5
6.0
4.5
1.0
2.0
Nota:  1394 es conocido también como FireWire o i.Link.

Al referirse a velocidades de transmisión, conviene recordar que en ocasiones se confunden las unidades de medida, y que las especificaciones de la capa física se refieren a la tasa real de datos, mientras que otras especificaciones se refieren a capacidades lógicas.  Por ejemplo, dado que en la comunicación serie asíncrona, incluyendo los bits de inicio y fin ("Start" y "Stop" bits), un Byte de datos ocupa en realidad 10 bits en el canal, resulta que una conexión de 3 Gbps (Gigabits por segundo) en la capa física, equivale a 300 MBps (Megabytes por segundo) de datos.
 La primera versión del estándar, que solo contemplaba dispositivos internos, definió un cable de conexión de 1 m;  más tarde se ha definido un cable de 2 m.  Suficiente para unir un equipo torre situado en el suelo, con una unidad de disco externa, situada quizás sobre la mesa.

Otra de las características de las placas ATX son el tipo de conector a la fuente de alimentación, el cual es de 24 (20+4) contactos que permiten una única forma de conexión y evitan errores como con las fuentes AT y otro conector adicional llamado P4, de 4 contactos. También poseen un sistema de desconexión por software.

Tipos y dimensiones ATX

  • ATX-30,5×24,4cm.
  • Mini-ATX-28.4cm x 20.8cm.
  • Micro-ATX-24.4cm x 24.4cm.
  • Flex-ATX-22.9cm x 19.1cm.
  • A-ATX-Format-30.5cm x 69cm.

Ventajas de ATX

  • Integración de los puertos E/S en la propia placa base.
  • La rotación de 90º de los formatos anteriores.
  • El procesador está en paralelo con los slots de memoria.
  • Los slots AGP, PCI, PCI-e, están situados horizontalmente con el procesador.
  • Tiene mejor refrigeración.

Fuente de Alimentación

Si se conecta directamente al formato de la antigua AT, el interruptor de entrada de la fuente de alimentación está conectado a la placa base ATX. Esto hace que podamos apagar el equipo mediante el software en sí. Sin embargo, lo que significa es que la placa base sigue siendo alimentada por una tensión de espera, que puede ser transmitida a las tarjetas de expansión. Esto permite funciones tales como Wake on LAN o Wake on Modem "encendido-apagado", donde el propio ordenador vuelve a encenderse cuando se utiliza la LAN con un paquete de reactivación o el módem recibe una llamada. La desventaja es el consumo de energía en modo de espera y el riesgo de daños causados por picos de voltaje de la red eléctrica, incluso si el equipo no está funcionando.
Para iniciar una fuente de alimentación ATX, es necesario el PS-ON (PowerSupplyOn) Pin 14 y 15. Sin embargo, la fuente de alimentación nunca tiene una carga fija para poder ser activada, ya que puede ser dañada. Debido a la evolución de los potentes procesadores y tarjetas gráficas ha sido necesario añadir al molex de 20pin cuatro pines más, es decir el conector utilizado actualmente en la placa base ATX es de 24 pines que disponen de un conducto de +12 V, +5 V, 3,3 V y tierra.
Las fuentes, para cumplir la norma, también tienen que respetar los límites de ruido y oscilación en sus salidas de voltaje, estos límites son 120mV para 12+, 50mV para 5V+ y 3,3V+. Estos valores son pico a pico.
___________________________________________________________________

=RAM=
La expresión memoria RAM se utiliza frecuentemente para referirse a los módulos de memoria que se usan en los computadores personales y servidores. En el sentido estricto, los módulos de memoria contienen un tipo, entre varios de memoria de acceso aleatorio, ya que las ROM, memorias Flash, caché (SRAM), los registros en procesadores y otras unidades de procesamiento también poseen la cualidad de presentar retardos de acceso iguales para cualquier posición. Los módulos de RAM son la presentación comercial de este tipo de memoria, que se compone de circuitos integrados soldados sobre un circuito impreso, en otros dispositivos como las consolas de videojuegos, esa misma memoria va soldada sobre la placa principal.
Su capacidad se mide en bytes, y dada su naturaleza siempre binaria, sus múltiplos serán representados en múltiplos binarios tales como Kilobyte, Megabyte, Gigabyte, Terabyte ... y así sucesivamente.
Historia

La historia está marcada por la necesidad del volumen de datos. Originalmente, los datos eran programados por el usuario con movimientos de interruptores. Se puede decir que el movimiento de datos era bit a bit. Las necesidades apuntaron a una automatización y se crearon lo que se denomina byte de palabra. Desde una consola remota, se trasladaban los interruptores asignándoles valores de letra, que correspondían a una orden de programación al microprocesador. Así, si se deseaba programar una orden NOT con dos direcciones distintas de memoria, solo se tenía que activar el grupo de interruptores asociados a la letra N, a la letra O y a la letra T. Seguidamente, se programaban las direcciones de memoria sobre las cuales recibirían dicho operador lógico, para después procesar el resultado. Los interruptores evolucionaron asignándoles una tabla de direccionamiento de 16x16 bytes, en donde se daban 256 valores de byte posibles (la actual tabla ASCII). En dicha tabla, se traducen lo que antes costaba activar 8 interruptores por letra, a una pulsación por letra (de cara al recurso humano, un ahorro en tiempos. Una sola pulsación, predisponía 1 byte en RAM... o en otras palabras, cambiaba la posición de 8 interruptores con una sola pulsación). Se usó el formato de máquina de escribir, para representar todo el alfabeto latino, necesario para componer palabras en inglés; así como los símbolos aritméticos y lógicos que permitían la escritura de un programa directamente en memoria RAM a través de una consola o teclado.y sexo
En origen, los programadores no veían en tiempo real lo que tecleaban, teniendo que imprimir de cuando en cuando el programa residente en memoria RAM y haciendo uso del papel a la hora de ir modificando o creando un nuevo programa. Dado que el papel era lo más accesible, los programas comenzaron a imprimirse en un soporte de celulosa más resistente, creando lo que se denominó Tarjeta perforada. Así pues, los programas constaban de una o varias tarjetas perforadas, que se almacenaban en archivadores de papel con las típicas anillas de sujeción. Dichas perforaciones, eran leídas por un dispositivo de entrada, que no era muy diferente al teclado y que constaba de pulsadores que eran activados o desactivados, dependiendo de si la tarjeta en la posición de byte, contenía una perforación o no. Cada vez que se encendía la máquina, requería de la carga del programa que iba a ejecutar.

=Synchronous Dynamic Random Access Memory (SDRAM)=
es una memoria dinámica de acceso aleatorio DRAM que tiene una interfaz síncrona. Tradicionalmente, la memoria dinámica de acceso aleatorio DRAM tiene una interfaz asíncrona, lo que significa que el cambio de estado de la memoria tarda un cierto tiempo, dado por las características de la memoria, desde que cambian sus entradas. En cambio, en las SDRAM el cambio de estado tiene lugar en el momento señalado por una señal de reloj y, por lo tanto, está sincronizada con el bus de sistema del ordenador. El reloj también permite controlar una máquina de estados finitos interna que controla la función de "pipeline" de las instrucciones de entrada. Esto permite que el chip tenga un patrón de operación más complejo que la DRAM asíncrona, que no tiene una interfaz de sincronización.
El método de segmentación significa que el chip puede aceptar una nueva instrucción antes de que haya terminado de procesar la anterior. En una escritura de datos, el comando "escribir" puede ser seguido inmediatamente por otra instrucción, sin esperar a que los datos se escriban en la matriz de memoria. En una lectura, los datos solicitados aparecen después de un número fijo de pulsos de reloj tras la instrucción de lectura, durante los cuales se pueden enviar otras instrucciones adicionales. (Este retraso se llama latencia y es un parámetro importante a considerar cuando se compra una memoria SDRAM para un ordenador.)
Las SDRAM son ampliamente utilizadas en los ordenadores, desde la original SDRAM y las posteriores DDR (o DDR1), DDR2 y DDR3. Actualmente se está diseñando la DDR4 y se prevé que estará disponible en 2012.
=DDR=
DDR (Double Data Rate) significa doble tasa de transferencia de datos en español. Son módulos de memoria RAM compuestos por memorias sincrónicas (SDRAM), disponibles en encapsulado DIMM, que permite la transferencia de datos por dos canales distintos simultáneamente en un mismo ciclo de reloj. Los módulos DDR soportan una capacidad máxima de 1 GiB (1 073 741 824 bytes).
Fueron primero adoptadas en sistemas equipados con procesadores AMD Athlon. Intel con su Pentium 4 en un principio utilizó únicamente memorias RAMBUS, más costosas. Ante el avance en ventas y buen rendimiento de los sistemas AMD basados en DDR SDRAM, Intel se vio obligado a cambiar su estrategia y utilizar memoria DDR, lo que le permitió competir en precio. Son compatibles con los procesadores de Intel Pentium 4 que disponen de un Front Side Bus (FSB) de 64 bits de datos y frecuencias de reloj internas que van desde los 200 a los 400 MHz.

=DDR2=
DDR2 es un tipo de memoria RAM. Forma parte de la familia SDRAM de tecnologías de memoria de acceso aleatorio, que es una de las muchas implementaciones de la DRAM.
Los módulos DDR2 son capaces de trabajar con 4 bits por ciclo, es decir 2 de ida y 2 de vuelta en un mismo ciclo mejorando sustancialmente el ancho de banda potencial bajo la misma frecuencia de una DDR SDRAM tradicional (si una DDR a 200 MHz reales entregaba 400 MHz nominales, la DDR2 por esos mismos 200 MHz reales entrega 800 MHz nominales). Este sistema funciona debido a que dentro de las memorias hay un pequeño buffer que es el que guarda la información para luego transmitirla fuera del módulo de memoria, este buffer en el caso de la DDR convencional trabajaba tomando los 2 bits para transmitirlos en 1 sólo ciclo, lo que aumenta la frecuencia final. En las DDR2, el buffer almacena 4 bits para luego enviarlos, lo que a su vez redobla la frecuencia nominal sin necesidad de aumentar la frecuencia real de los módulos de memoria.
Las memorias DDR2 tienen mayores latencias que las conseguidas con las DDR convencionales, cosa que perjudicaba su rendimiento. Reducir la latencia en las DDR2 no es fácil. El mismo hecho de que el buffer de la memoria DDR2 pueda almacenar 4 bits para luego enviarlos es el causante de la mayor latencia, debido a que se necesita mayor tiempo de "escucha" por parte del buffer y mayor tiempo de trabajo por parte de los módulos de memoria, para recopilar esos 4 bits antes de poder enviar la información.
=DDR3=
DDR3 es un tipo de memoria RAM. Forma parte de la familia SDRAM de tecnologías de memoria de acceso aleatorio, que es una de las muchas implementaciones de la SDRAM.
El principal beneficio de instalar DDR3 es la habilidad de hacer transferencias de datos más rápido, lo que permite obtener velocidades de transferencia y velocidades de bus más altas que las versiones DDR2 anteriores. Sin embargo, no hay una reducción en la latencia, la cual es proporcionalmente más alta. Además la DDR3 permite usar integrados de 512 MB a 8 GB, siendo posible fabricar módulos de hasta 16 GiB. También proporciona significativas mejoras en el rendimiento en niveles de bajo voltaje, lo que lleva consigo una disminución del gasto global de consumo.
Se prevé que la tecnología DDR3 puede ser dos veces más rápida que la DDR2 y el alto ancho de banda que promete ofrecer DDR3 es la mejor opción para la combinación de un sistema con procesadores dual-core, quad-core y hexa core (2, 4 y 6 núcleos por microprocesador). Las tensiones más bajas del DDR3 (1,5 V frente 1,8 V de DDR2) ofrecen una solución térmica y energética más eficaces.


=DIMM=
DIMM son las siglas de «Dual In-line Memory Module» y que podemos traducir como Módulo de Memoria en línea doble. Son módulos de memoria RAM utilizados en ordenadores personales. Se trata de un pequeño circuito impreso que contiene chips de memoria y se conecta directamente en ranuras de la placa base. Los módulos DIMM son reconocibles externamente por poseer sus contactos (o pines) separados en ambos lados, a diferencia de los SIMM que poseen los contactos de modo que los de un lado están unidos con los del otro.
Las memorias DIMM comenzaron a reemplazar a las SIMM como el tipo predominante de memoria cuando los microprocesadores Intel Pentium dominaron el mercado.
Un DIMM puede comunicarse con el PC a 64 bits (y algunos a 72 bits) en vez de los 32 bits de los SIMM.
Funciona a una frecuencia de 133 MHz cada una.
El hecho de que los módulos en formato DIMM (Módulo de Memoria en Línea Doble),sean memorias de 64 bits, explica por qué no necesitan emparejamiento. Los módulos DIMM poseen chips de memoria en ambos lados de la placa de circuito impresa, y poseen a la vez, 84 contactos de cada lado, lo cual suma un total de 168 contactos. Además de ser de mayores dimensiones que los módulos SIMM (130x25mm), estos módulos poseen una segunda muesca que evita confusiones.
Cabe observar que los conectores DIMM han sido mejorados para facilitar su inserción, gracias a las palancas ubicadas a ambos lados de cada conector.
También existen módulos más pequeños, conocidos como SO DIMM (DIMM de contorno pequeño), diseñados para ordenadores portátiles. Los módulos SO DIMM sólo cuentan con 144 contactos en el caso de las memorias de 64 bits, y con 77 contactos en el caso de las memorias de 32 bits.
SODIMM:
(Small Outline DIMM). Tipo de memoria de computadora. Las SO-DIMM son una alternativa más pequeña a las DIMM, siendo aproximadamente de la mitad del tamaño de las DIMMs estándares. Por esta razón, las SO-DIMM son principalmente usadas en notebooks, subnotebooks, en impresoras actualizables y hardware de redes como routers.

Una DIMM normal posee 168, 184 o 240 pines y todas soportan transferencias de 64 bits. En tanto las SO-DIMM tienen 72, 100, 144 o 200 pines. Las de 72 y 100 pines soportan tranferencias de 32 bits, mientras que los de 144 y 200 soportan 64 bits.

Las memorias SO-DIMM son más o menos iguales en poder y voltaje que las DIMM, e incluso están disponibles en iguales velocidades y capacidades de almacenamiento.

______________________________________________________________________________
=GABINETE=
El gabinete es una caja metálica y de plástico, horizontal o vertical (en este último caso, también es llamado torre o tower), en el que se encuentran todos los componentes de la computadora (placas, disco duro, procesador, etc ).

El gabinete posee una unidad de fuente eléctrica, que convierte la corriente eléctrica alterna en corriente continua para alimentar todos los componentes.

Así, la fuente de alimentación eléctrica debe tener una potencia adecuada para la cantidad de periféricos que se pretende instalar en el equipo. Mientras más componentes se desee instalar más potencia será necesaria.

Dentro del gabinete son instaladas las placas, que son grupos de circuitos electrónicos que sirven para comandar la computadora y sus periféricos. Las principales placas ya vienen instaladas cuando se compra la computadora, pero otras pueden ser instaladas, para mejorar la performance, tales como una placa aceleradora de vídeo o una placa de sonido
Dentro del gabinete son colocados:


Fuente
Mainboard (Placa madre)
Procesador
Placa de Vídeo
Placa de Sonido
Placa de Red
Drives internos (Drive de CD, Drive de DVD, Lectores de Memoria)
Memoria
Disco duro (HD)

Los gabinetes pueden ser comprados con o sin fuente.

A muchos les gusta hacer alteraciones en el gabinete, lo que es conocido como Case Modding.

Tipos

El tamaño de las carcasas viene dado por el factor de forma de la placa base. Sin embargo el factor de forma solo especifica el tamaño interno de la caja.
  • Barebone: Gabinetes de pequeño tamaño cuya función principal es la de ocupar menor espacio y crea un diseño más agradable. Son útiles para personas que quieran dar buena impresión como una persona que tenga un despacho en el que reciba a mucha gente. Los barebone tienen el problema de que la expansión es complicada debido a que admite pocos (o ningún) dispositivos. Otro punto en contra es el calentamiento al ser de tamaño reducido aunque para una persona que no exija mucho trabajo al ordenador puede estar bien. Este tipo de cajas tienen muchos puertos USB para compensar la falta de dispositivos, como una disquetera (ya obsoleta), para poder conectar dispositivos externos como un disco USB o una memoria.
  • Minitorre: Dispone de una o dos bahías de 5 ¼ y dos o tres bahías de 3 ½. Dependiendo de la placa base se pueden colocar bastantes tarjetas. No suelen tener problema con los USB y se venden bastantes modelos de este tipo de torre ya que es pequeña y a su vez hace las paces con la expansión. Su calentamiento es normal y no tiene el problema de los barebone.
  • Sobremesa: No se diferencian mucho de las minitorres, a excepción de que en lugar de estar en vertical se colocan en horizontal sobre el escritorio. Antes se usaban mucho, pero ahora están cada vez más en desuso. Se solía colocar sobre ella el monitor.
  • Mediatorre o semitorre: La diferencia de ésta es que aumenta su tamaño para poder colocar más dispositivos. Normalmente son de 4 bahías de 5 ¼ y 4 de 3 ½ y un gran número de huecos para poder colocar tarjetas y demás aunque esto depende siempre de la placa base.
  • Torre: Es el más grande. Puedes colocar una gran cantidad de dispositivos y es usado cuando se precisa una gran cantidad de dispositivos.
  • Servidor: Suelen ser gabinetes más anchos que los otros y de una estética inexistente debido a que van destinadas a lugares en los que no hay mucho tránsito de clientes como es un centro de procesamiento de datos. Su diseño está basado en la eficiencia donde los periféricos no es la mayor prioridad sino el rendimiento y la ventilación. Suelen tener más de una fuente de alimentación de extracción en caliente para que no se caiga el servidor en el caso de que se estropee una de las dos y normalmente están conectados a un SAI que protege a los equipos de los picos de tensión y consigue que en caso de caída de la red eléctrica el servidor siga funcionando por un tiempo limitado.
  • Rack: Son otro tipo de servidores. Normalmente están dedicados y tienen una potencia superior que cualquier otro ordenador. Los servidores rack se atornillan a un mueble que tiene una medida especial: la "U". Una "U" es el ancho de una ranura del mueble. Este tipo de servidores suele colocarse en salas climatizadas debido a la temperatura que alcanza.
  • Modding: El modding es un tipo de gabinete que es totalmente estético incluso se podría decir en algunos casos que son poco funcionales. Normalmente este tipo de gabinetes lleva incorporado un montón de luces de neón, ventiladores, dibujos y colores extraños pero también los hay con formas extravagantes que hacen que muchas veces sea difícil la expansión (como una torre en forma de pirámide en la que colocar componentes se complica.
  • Portátiles: Son equipos ya definidos. Poco se puede hacer para expandirlos y suelen calentarse mucho si son muy exigidos. El tamaño suele depender del monitor que trae incorporado y con los tiempos son cada vez más finos. Su utilidad se basa en que tenemos todo el equipo integrado en el gabinete: Teclado, monitor, y mouse, y por lo tanto lo hacen portátil.


=Fuente de poder=
La fuente de poder, fuente de alimentación o fuente de energía es el dispositivo que provee la electricidad con que se alimenta una computadora u ordenador. Por lo general, en las computadoras de escritorio (PC), la fuente de poder se ubica en la parte de atrás del gabinete, junto a un ventilador que evita su recalentamiento.
La fuente de poder es una fuente eléctrica, un artefacto activo que puede proporcionar corriente eléctrica gracias a la generación de una diferencia de potencial entre sus bornes. Se diseña a partir de una fuente ideal, que es un concepto utilizado en la teoría de circuitos para analizar el comportamiento de los componentes electrónicos y los circuitos reales.
La fuente de alimentación se encarga de convertir la tensión alterna de la red industrial en una tensión casi continua. Para esto consta de un rectificador, fusibles y otros componentes que le permiten recibir la electricidad, regularla, filtrarla y adaptarla a las necesidades de la computadora.
Es importante cuidar la limpieza de la fuente de poder; de lo contrario, puede acumular polvo que obstruya la salida de aire. Al aumentar la temperatura, la fuente puede recalentarse y quemarse, dejando de funcionar. Una falla en la fuente de poder incluso puede perjudicar a otros componentes de la computadora, como la placa madre o la placa de video.

Los Puertos de Comunicación
Los puertos de comunicación son herramientas que permiten manejar e intercambiar datos entre un computador (generalmente están integrados en las tarjetas madres) y sus diferentes periféricos, o entre dos computadores. Entre los diferentes puertos de comunicación tenemos:
1.    1.1 Definición:
Estos puertos son en esencia puertos paralelos que se utilizan para conectar pequeños periféricos a la PC. Su nombre viene dado por las computadoras de modelo PS/2 de IBM, donde fueron utilizados por primera vez.
1.2 Características:
Este es un puerto serial, con conectores de tipo Mini DIN, el cual consta por lo general de 6 pines o conectores. La placa base tiene el conector hembra. En las placas de hoy en día se pueden distinguir el teclado del Mouse por sus colores, siendo el teclado (por lo general) el de color violeta y el Mouse el de color verde. (Anexo B)
1.3 Forma: (Anexo B.1)
Existen 2 conectores diferentes para estos puertos. El primero es un DIN de 5 pines (conocido comúnmente como AT) y el segundo es un conector MiniDIN de 6 pines (normalmente llamado PS/2). Estos dos conectores son electrónicamente iguales, lo único que cambia es su apariencia interna.
1.4 Ubicación en el sistema informático:
Estos puertos son utilizados principalmente por teclados y ratones.
2.    Puertos PS/2:
3.    Puertos USB (Universal Serial Bus):
2.1 Definición:
Estándar que comenzó en 1995 por Intel, Compaq, Microsoft.  En 1997, el USB llegó a ser popular y extenso con el lanzamiento del chipset de 440LX de Intel.
Es una arquitectura de bus desarrollada por las industrias de computadoras y telecomunicaciones, que permite instalar periféricos sin tener que abrir la maquina para instalarle hardware, es decir, que basta con conectar dicho periférico en la parte posterior del computador.
2.2 Características:
         Una central USB le permite adjuntar dispositivos periféricos rápidamente, sin necesidad de reiniciar la computadora ni de volver a configurar el sistema.
         El USB trabaja como interfaz para la transmisión de datos y distribución de energía que ha sido introducido en el mercado de PCs y periféricos para mejorar las lentas interfases serie y paralelo.
         Los periféricos para puertos USB son reconocidos automáticamente por el computador (y se configuran casi automáticamente) lo cual evita dolores de cabeza al instalar un nuevo dispositivo en el PC.
         Los puertos USB son capaces de transmitir datos a 12 Mbps.
2.3 Forma: (Anexo C)
Existe un solo tipo de cable USB (A-B) con conectores distintos en cada extremo, de manera que es imposible conectarlo erróneamente. Consta de 4 hilos, transmite a 12 Mbps y es "Plug and Play", que distribuye 5v para alimentación y transmisión de datos.
2.4 Ubicación en el sistema informático
El USB es la tecnología preferida para la mayoría de los teclados, Mouse y otros dispositivos de entrada de información de banda estrecha. El USB también esta muy extendido en cámaras fotográficas digitales, impresoras, escáneres, módems, joysticks y similares.
1.    Puertos Seriales (COM):
3.1 Definición:
Son adaptadores que se utilizan para enviar y recibir información de BIT en BIT fuera del computador a través de un único cable y de un determinado software de comunicación. Un ordenador o computadora en serie es la que posee una unidad aritmética sencilla en la cual la suma en serie es un calculo digito a digito
3.2 Características:
         Los puertos seriales se identifican típicamente dentro del ambiente de funcionamiento como puertos del COM (comunicaciones). Por ejemplo, un ratón pudo ser conectado con COM1 y un módem a COM2.
         Los voltajes enviados por los pines pueden ser en 2 estados, encendido o apagado. Encendido (valor binario de 1) significa que el pin esta transmitiendo una señal entre -3 y -25 voltios, mientras que apagado (valor binario de 0) quiere decir que esta transmitiendo una señal entre +3 y +25 voltios.
3.    Forma: (Anexo D)
Estos conectores son de tipo macho y los hay de 2 tamaños, uno estrecho, de 9 pines agrupados en dos hileras con una longitud aproximada de 17mm y otro ancho de 25 pines, con una longitud de unos 38mm, internamente son iguales (9 pines) y realizan las mismas funciones.
3.4 Ubicación en el sistema informático:
Estos puertos se utilizan para conectar el Mouse y el MODEM. Normalmente el Mouse se conecta a un puerto COM de 9 pines (comúnmente COM1) y el MODEM se conecta a un puerto de 25 pines (comúnmente COM2).    
4.    Puertos Paralelos (LPT):

4.1 Definición:
Son conectores utilizados para realizar un enlace entre dos dispositivos; en el sistema lógico se le conoce como LPT. El primer puerto paralelo LPT1 es normalmente el mismo dispositivo PRN (nombre del dispositivo lógico de la impresora).
2.    Características:
Unidireccional - puerto estándar 4-BIT que por defecto de la fábrica no tenía la capacidad de transferir datos ambas direcciones.
Bidireccional - puerto estándar 8-BIT que fue lanzado con la introducción del puerto PS/2 en 1987 por IBM y todavía se encuentra en computadoras hoy. El puerto bidireccional es capaz de enviar la
entrada 8-bits y la salida.  Hoy en las impresoras de múltiples funciones este puerto se puede referir como uno bidireccional
EPP - el puerto paralelo realzado (EPP) fue desarrollado en 1991 por Intel, Xircom y  funciona cerca de velocidad de una tarjeta ISA y puede alcanzar transferencias  hasta 1 a 2MB / por segundo de datos.
4.3 Forma: (Anexo E)
Estos puertos son del tipo hembra, de unos 38mm de longitud con 25 pines agrupados en dos hileras.
El puerto paralelo está formado por 17 líneas de señales y 8 líneas de tierra (Anexo E.1). Las líneas de señales están formadas por tres grupos:
         4 Líneas de control
         5 Líneas de estado
         8 Líneas de datos
4.    Ubicación en el sistema informático:
Normalmente se utiliza para conectar impresoras, scanners y en algunos casos hasta dos PCs.
Los puertos de comunicación mayormente utilizados en el ambiente de las redes son el RJ-45 y el RJ-11.
4.    Puertos RJ-11:
5.1 Definición:
Es un conector utilizado por lo general en los sistemas telefónicos y es el que se utiliza para conectar el MODEM a la línea telefónica de manera que las computadoras puedan tener acceso a Internet.
2.    El RJ11 se refiere expresamente al conector de medidas reducidas el cual está al cable telefónico y tiene cuatro contactos (pines) para cuatro hilos de cable telefónico aunque se suelen usar únicamente dos.
En España se usa en toda conexión telefónica. En Alemania, por el contrario, usan RJ45 como conectores telefónicos.
3.    Características:
4.    Forma:
Tiene forma de cubo, y consta de cuatro cables de los cuales se utilizan solo dos para las conexiones telefónicas. Este es mayormente usado en España. (Anexo F)
1.    Puertos RJ-45:
6.1 Definición:
Es una interfaz física utilizada comúnmente en las redes de computadoras, sus siglas corresponden a "Registered Jack" o "Clavija Registrada", que a su vez es parte del código de regulaciones de Estados Unidos.
6.2 Características:
         Es utilizada comúnmente con estándares como EIA/TIA-568B, que define la disposición de los pines.
         Para que todos los cables funcionen en cualquier red, se sigue un estándar a la hora de hacer las conexiones.
         Este conector se utiliza en la mayoría de las tarjetas de Ethernet (tarjetas de red) y va en los extremos de un cable UTP nivel 5
6.3 Forma: (Anexo G)
Posee ocho pines o conexiones eléctricas, que normalmente se usan como extremos de cables de par trenzado.
6.4 Ubicación en el sistema informático:
Se conecta a la tarjeta de red. Puede tener el formato RJ45 (parecido al de un conector de teléfono) o BINC.
1.    Puertos VGA
7.1 Definición:
El puerto VGA es el puerto estandarizado para conexión del monitor a la PC.
7.2 Características:
         Su conector es un HD 15, de 15 pines organizados en 3 hileras horizontales.
7.3 Forma: (Anexo H)
Es de forma rectangular, con un recubrimiento plástico para aislar las partes metálicas.
7.4 Ubicación en el sistema informatico:
En la parte posterior de los monitores y en la parte trasera del PC, cerca del puerto de S-video.
1.    Puertos RCA
1.    El conector RCA es un tipo de conector eléctrico común en el mercado audiovisual. El nombre "RCA" deriva de la Radio Corporation of America, que introdujo el diseño en los 1940.
2.    Definición:
Un problema del sistema RCA es que cada señal necesita su propio cable. Para evitar líos, se usan otros tipos de conectores combinados, como el euroconector (SCART), presente en la mayoría de televisiones modernas. Además, también se encuentran adaptadores RCA-SCART.
3.    Características:
4.    Forma: (Anexo I)
El cable tiene un conector macho en el centro, rodeado de un pequeño anillo metálico (a veces con ranuras), que sobresale. En el lado del dispositivo, el conector es un agujero cubierto por otro aro de metal, más pequeño que el del cable para que éste se sujete sin problemas.
Ambos conectores (macho y hembra) tienen una parte de plástico. Los colores usados suelen ser:
         Amarillo para el vídeo compuesto
         Rojo para el canal de sonido derecho
         Blanco o negro para el canal de sonido izquierdo (en sistemas estéreo)
________________________________________________________________________________

PUERTO LTP:
  Puerto paralelo y puerto LPT se refieren al mismo tipo de conector. Se le llama paralelo, porque permite el envío de datos, en conjuntos simultáneos de 8 bits, mientras que un serial se dedica a enviar los datos uno detrás de otro. La sigla LPT significa ("Line Print Terminal / Line PrinTer"), que traducido significa línea terminal de impresión/línea de la impresora. Es un conector semitrapezoidal de 25 terminales, que permite la transmisión de datos desde un dispositivo externo (periférico), hacia la computadora; por ello es considerado puerto.
Este puerto está siendo reemplazado por el puerto USB para impresoras y escáneres, pero aún viene integrado en la tarjeta principal (Motherboard).
Características del puerto paralelo ó LPT
En el ámbito de la electrónica comercial se le denomina como conector DB25 ("D-subminiature type B, 25 pin"), esto es D-subminiatura tipo B, con 25 huecos para pines.
         Se utilizaba principalmente para la conexión de impresoras, unidades de lectura para discos ZIP y escáneres.
         Para conectar y desconectar los dispositivos, así como para que la computadora los reconozca de manera correcta, es necesario apagar y reiniciar la computadora.

El puerto LPT tiene 25 huecos para albergar pines destinados a la alimentación eléctrica y transmisión de datos, en la siguiente figura se muestran las líneas eléctricas y su descripción básica.

USB
El Universal Serial Bus (bus universal en serie), abreviado comúnmente USB, es un puerto que sirve para conectar periféricos a un ordenador. Fue creado en 1996 por siete empresas (que actualmente forman el consejo directivo): IBM, Intel, Northern Telecom, Compaq, Microsoft, Digital Equipment Corporation y NEC.

El diseño del USB tenía en mente eliminar la necesidad de adquirir tarjetas separadas para poner en los puertos bus ISA o PCI, y mejorar las capacidades plug-and-play permitiendo a esos dispositivos ser conectados o desconectados al sistema sin necesidad de reiniciar. Sin embargo, en aplicaciones donde se necesita ancho de banda para grandes transferencias de datos, o si se necesita una latencia baja, los buses PCI o PCIe salen ganando. Igualmente sucede si la aplicación requiere de robustez industrial. A favor del bus USB, cabe decir que cuando se conecta un nuevo dispositivo, el servidor lo enumera y agrega el software necesario para que pueda funcionar (esto dependerá ciertamente del sistema operativo que se esté usando).

El USB puede conectar varios tipos de dispositivos como pueden ser: mouse, teclados, escáneres, cámaras digitales, teléfonos móviles, reproductores multimedia, impresoras, discos duros externos entre otros ejemplos, tarjetas de sonido, sistemas de adquisición de datos y componentes de red. Para dispositivos multimedia como escáneres y cámaras digitales, el USB se ha convertido en el método estándar de conexión. Para impresoras, el USB ha crecido tanto en popularidad que ha desplazado a un segundo plano a los puertos paralelos porque el USB hace mucho más sencillo el poder agregar más de una impresora.

Algunos dispositivos requieren una potencia mínima, así que se pueden conectar varios sin necesitar fuentes de alimentación extra. La gran mayoría de los concentradores incluyen fuentes de alimentación que brindan energía a los dispositivos conectados a ellos, pero algunos dispositivos consumen tanta energía que necesitan su propia fuente de alimentación. Los concentradores con fuente de alimentación pueden proporcionarle corriente eléctrica a otros dispositivos sin quitarle corriente al resto de la conexión (dentro de ciertos límites).

En el caso de los discos duros, es poco probable que el USB reemplace completamente a los buses (el ATA (IDE) y el SCSI), pues el USB tiene un rendimiento más lento que esos otros estándares. Sin embargo, el USB tiene una importante ventaja en su habilidad de poder instalar y desinstalar dispositivos sin tener que abrir el sistema, lo cual es útil para dispositivos de almacenamiento externo. Hoy en día, una gran parte de los fabricantes ofrece dispositivos USB portátiles que ofrecen un rendimiento casi indistinguible en comparación con los ATA (IDE). Por el contrario, el nuevo estándar Serial ATA permite tasas de transferencia de hasta aproximadamente 150/300 MB por segundo, y existe también la posibilidad de extracción en caliente e incluso una especificación para discos externos llamada eSATA.

El USB casi ha reemplazado completamente a los teclados y mouses (ratones) PS/2, hasta el punto que un amplio número de placas base modernas carecen de dicho puerto o solamente cuentan con uno válido para los dos periféricos





=Chipset Norte y sur=
el puente norte.... es un circuito integrado que se encarga de "orquestar" y manejar toda la informacion de los perifericos " masrapidos"... los slots, PCI, PCI-Express, ISA, blablabla...Ahora.....¿Para que?. la "velocidad" del Microprocesador es masrapida que la de los otros perifericos, asi que, se perderia mucho tiempo de procesamiento si el procesador tuviera que esperar por la informacion de cada periferico, lo que hace el chipset ( o puente norte).... Es la de "guardar" la informacion un ratin en lo que el la informacion es procesada por los perifericos, o en lo que se envia, o en lo que reaccionan o lo que sea, los chipsets nuevos bueno... los chipsets, por lo general orquestan los perifericos, en sus funciones basicas, para que el microprocesador solo diga: Quiero datos de: ---
y el chipset se encarga de todo lo demas... para que cuando tenga la informacion el micro solo lea... informacion de... :
En pocas palabras, si hicieramos la analogia entre un puente norte y el cuerpo humano, este seria como la medula espinal o columna vertebral, conecta al microprocesador con casi todo....


En puente sur, es encargado de componentes mas "lentos".... como discos duros, algunos USB, en fin..perifericos que acomparacion de una tarjeta de video, son " lentos"....Pero... se conecta al Puente norte tambien

La primera ranura PCI se utilizaba para el adaptador gráfico,pero se sustituyó por la ranura AGP específicamente diseñada para esta tarea. AGP (Accelerated Graphics Port) es un estándar introducido por Intel en 1996 y en su versión 8x puede sincronizar con frecuencias de bus de 533MHz y ofrecer tasas de transferencia de 2GB/s.
Busca la documentación de la placa base de tu equipo, observa el plano (layout) de la placa base. ¿Cuantas ranuras PCI incluye? ¿Alguna está compartida? ¿ Cuántas ranuras AGP? Responde indicando siempre cual es el chipset.
AGP: Una ranura de expansión, bus de expansión ó "slot" es un elemento que permite introducir dentro de si, otros dispositivos llamados tarjetas de expansión (son tarjetas que se introducen en la ranura de expansión y dan mas prestaciones al equipo de cómputo), mientras que la definición de Intel® de su conector es como puerto debido a sus características, por ello aún no esta bien determinado el tipo que es.
      AGP proviene de las siglas de ("Accelerated Graphics Port") ó puerto acelerador de gráficos. Este tipo de ranura-puerto fue desarrollado por Intel® y lanzado al mercado en 1997 exclusivamente para soporte de gráficos.
     Los bits en las ranuras de expansión significan la capacidad de datos que es capaz de proveer, este dato es importante ya que por medio de una fórmula, es posible determinar la transferencia máxima de la ranura ó de una tarjeta de expansión. Esto se describe en la sección: Bus y  bus de datos AGP de esta misma página.


AGP:
(Communication and Networking Riser, Elevador de Comunicación y Red). Es una ranura de expansión en la placa madre para dispositivos de comunicaciones como módems, tarjetas Lan o USB.

Fue lanzado en febrero de 2000 por Intel en sus placas para procesadores Pentium y se trataba de un diseño propietario, por lo que no se extendió más allá de las placas que incluían los chipsets de Intel.

Adolecía de los mismos problemas de recursos de los dispositivos diseñados para ranura AMR. Actualmente no se incluye en las placas.
=PCI EXPRESS=
Apesar de que las actuales soluciones PCI Express 1.1 de NVIDIA brindan un alto nivel de rendimiento que supera con creces el de los buses AGP y PCI, la compañía no deja de trabajar por la innovación y es pionera en el desarrollo de nuevas interfaces avanzadas de alta velocidad como PCI Express 2.0. Las soluciones PCI Express 2.0 de NVIDIA duplican el ancho de banda del bus PCI Express para introducir nuevos niveles de rendimiento del sistema y los gráficos en PC de sobremesa, portátiles, móviles y sistemas profesionales destinados a todos los segmentos del mercado. En octubre de 2007, NVIDIA tuvo el placer de presentar la primera tarjeta gráfica PCIe Gen2 del mundo, la GeForce 8800 GT.
Además de mayor rendimiento, las soluciones PCI Express 2.0 de NVIDIA incorporan funciones de gestión avanzada de la alimentación, lo que se traducirá en un consumo más eficiente de la energía en las próximas generaciones de sistemas.


Pila
DEFINICION

La pila es una pequeña batería de 3v (a veces 5v) la cual va en la placa madre del PC, la función de la pila tipo botón es entregarle energía continua a la placa madre para que almacene la información de los BIOS y ser guardada en la memoria RAM CMOS, cuando la pila se saca la BIOS se resetean, existen varias pilas virtuales en cuestiones de memoria las utiliza el sistema operativo.
-La Pila o Stack de la computadora es propiamente la memoria de la que dispone. Es una estructura de datos de LIFO (Last In, FirstOut).
-Para fines prácticos se podría ver propiamente como un arreglo donde se va introduciendo los datos y de ahí alimenta a los programas que corres en tu maquina.-Por ejemplo, si has trabajado con Windows 98 era muy común el FATAL ERROR de VOLCADO DE PILA. Y no es que la pila de tu PC se estuviese terminando, si no que la memoria había llegado a su limite físico y no podía almacenar mas.

Además podemos agregar q la Pila es una zona de los registros de segmento de memoria que la unidad aritmética y lógica utiliza para almacenar temporalmente los datos que está manipulando. Cuando la cantidad de datos a manejar es demasiado grande u otras necesidades del proceso impiden que estos datos puedan almacenarse en los registros creados para ello se envían a la pila, donde se almacenan hasta que la unidad de control recupera la información para que la procese la unidad aritmética y lógica.
La ventaja de manejar una pila como
almacén de información es que la información que se guarda en ella tiene que entrar y salir, obligatoriamente, por una sola dirección de memoria. Esto permite que la unidad de control no necesite conocer más que esa dirección para poder manejar los datos almacenados en la pila.


*A continuación se enlistan seis pilas de protocolos conocidas
PROVEEDOR PILA
-Novell corporation -NETWARE
-Banyansystemscorporation -VINES
-Apple computercorporation -APPLE TALK
-Digital Euipmentcorporation -DECNET
-iBM -SNA
-Varios proveedorres -TCP/IP


ALGUNOS EJEMPLOS O CASOS DE PILAS:

Trabajo habitualmente con pilas de Motherboards y es terrible ver el daño que causa una pila gastada y sulfatada en el Motherboard de una computadora, ahora no tanto porque los nuevos mothers vienen con pilas de reloj (CR2032) y con portapila, pero en las primeras máquinas la bateria venía soldada y algunos "técnicos" cuando se agotaban en vez de retirarlas y cambiarlas, las dejaban y conectaban un pack de pilas comunes externas el caso es que al poco tiempo la original ya agotada se sulfataba y terminaba comiéndose las pistas del circuito impreso. Obviamente al poco tiempo moría el mother.

Existe una forma de saber si la pila interna del mother se está agotando:por ejemplo si empieza a atrasar el reloj de la PC, señal de alerta ya que la hora de la PC se mantiene cuando la misma está apagada gracias a esta batería.
Otra señal es cuando la PC pierde la información de la BIOS es decir cuando se enciende y se ha perdido la información que hace referencia al tipo de disco rígido, tipo de disketeras (la hora y fecha también) etc. Incluso he notado que en ciertos Motherboards cuando se quiere instalar W95/98 y la bateria está baja da varios errores durante la instalación que se solucionan con solo cambiarla!



=TARJETA DE VIDEO=
Una tarjeta de video o tarjeta gráfica es una tarjeta que presenta un circuito impreso para transformar las señales eléctricas procedentes del microprocesador de una computadora en información que puede ser representada a través del monitor.

Las tarjetas de video pueden contar con procesadores de apoyo para procesar la información de la forma más rápida y eficiente posible. También es posible que incluyan chips de memoria para almacenar las imágenes de manera temporal.
En definitiva, las tarjetas de video están compuestas por distintos elementos. El procesador gráfico le permite hacer los cálculos y reconstruir las figuras. La memoria de video es el componente que almacena la información de lo que se visualizará en la pantalla. El disipador es un dispositivo que permite bajar la temperatura que genera el procesador gráfico durante su funcionamiento. Por último, podemos mencionar al RAMDAC, que es un conversor que transforma la señal digital de la computadora en una salida analógica compatible con el monitor.
Las tarjetas de video modernas pueden ofrecer características adicionales, como la sintonización de señales televisivas, la presencia de conectores para un lápiz óptico, la grabación de video y la decodificación de distintos formatos.
Una tarjeta gráfica es considerada, por lo general, a partir de dos grandes características. La resolución de imagen capaz de soportar y el número de colores que puede mostrar de manera simultánea.

Características del Bus PCI Express

El bus PCI Express se presenta en diversas versiones (1X, 2X, 4X, 8X, 12X, 16X y 32X), con rendimientos de entre 250 Mb/s y 8 Gb/s, es decir, 4 veces el rendimiento máximo de los puertos AGP 8X. Dado que el costo de fabricación es similar al del puerto AGP, es de esperar que el bus PCI Express lo reemplace en forma progresiva.

Conectores PCI Express

Los conectores PCI Express no son compatibles con los conectores PCI más antiguos. Varían en tamaño y demandan menos energía eléctrica. Una de las características más interesantes del bus PCI Express es que admite la conexión en caliente, es decir, que puede conectarse y desconectarse sin que sea necesario apagar o reiniciar la máquina. Los conectores PCI Express son identificables gracias a su tamaño pequeño y su color gris oscuro.
El PCI Express estándar también tiene como finalidad reemplazar la tecnología PC Card, mediante conectores "PCI Express Mini Card". Además, a diferencia de los conectores PCI, que sólo pueden utilizarse para establecer conexiones internas, el PCI Express estándar puede utilizarse para conectar periféricos externos mediante el uso de cables. A pesar de ello, no compite con los puertos USB ni FireWire
________________________________________________________________

No hay comentarios:

Publicar un comentario